Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Persistent Betti numbers are a major tool in persistent homology, a subfield of topological data analysis. Many tools in persistent homology rely on the properties of persistent Betti numbers considered as a two-dimensional stochastic process$$ (r,s) \mapsto n^{-1/2} (\beta^{r,s}_q ( \mathcal{K}(n^{1/d} \mathcal{X}_n))-\mathbb{E}[\beta^{r,s}_q ( \mathcal{K}( n^{1/d} \mathcal{X}_n))])$$. So far, pointwise limit theorems have been established in various settings. In particular, the pointwise asymptotic normality of (persistent) Betti numbers has been established for stationary Poisson processes and binomial processes with constant intensity function in the so-called critical (or thermodynamic) regime; see Yogeshwaranet al.(Prob. Theory Relat. Fields167, 2017) and Hiraokaet al.(Ann. Appl. Prob.28, 2018). In this contribution, we derive a strong stabilization property (in the spirit of Penrose and Yukich,Ann. Appl. Prob.11, 2001) of persistent Betti numbers, and we generalize the existing results on their asymptotic normality to the multivariate case and to a broader class of underlying Poisson and binomial processes. Most importantly, we show that multivariate asymptotic normality holds for all pairs (r,s),$$0\le r\le s<\infty$$, and that it is not affected by percolation effects in the underlying random geometric graph.more » « lessFree, publicly-accessible full text available December 3, 2025
-
We investigate multivariate bootstrap procedures for general stabilizing statistics, with specific application to topological data analysis. The work relates to other general results in the area of stabilizing statistics, including central limit theorems for geometric and topological functionals of Poisson and binomial processes in the critical regime, where limit theorems prove difficult to use in practice, motivating the use of a bootstrap approach. A smoothed bootstrap procedure is shown to give consistent estimation in these settings. Specific statistics considered include the persistent Betti numbers of Čech and Vietoris–Rips complexes over point sets in Rd, along with Euler characteristics, and the total edge length of the k-nearest neighbor graph. Special emphasis is given to weakening the necessary conditions needed to establish bootstrap consistency. In particular, the assumption of a continuous underlying density is not required. Numerical studies illustrate the performance of the proposed method.more » « less
An official website of the United States government

Full Text Available